Soil Erosion

In: Science

Submitted By grandmawanda13
Words 373
Pages 2
Soil Erosion
Environmental Science
Wanda Black
2/12/15

Soil is solid material of geological and biological origin that is changed by chemical, biological and physical processes. This gives the soil the ability to support plant growth. Erosion is the process of soil and humus particles being picked up and carried away by water or wind. Erosion follows when soil is bared and exposed to the elements. This is how soil erosion happens as well as when there are no plants or trees and soil getting swept into the river.
The negative impacts of soil erosion, is overgrazing, over cultivation and deforestation. Overgrazing is grassland that is constantly plowed and crops grown on it. The grasslands don’t get enough rain to support cultivated crops or are too steep for cropping and for grazing livestock. It reduces the ability of plants to grow and water to not penetrate the land. Overgrazing can be prevented by farmers getting information from the U.S. Natural Resources Conservation Service (NRCS). They do testing and analysis of soil. The NRSC have helped decrease soil erosion from 2.1 billion tons in 1992 to 1.7 billion tons in 2007 and made consequences of improved conversion practices such as windbreaks, grassed waterways and field border strips of perineal vegetation. If the land is left untreated it could cause a problem with the food chain. Overcultivation is when the soil has been plowed to control weeds and the soil is exposed to wind and water. The soil may remain bare for a considerable time after planting and again after harvest. Farmers can abandon rotation, degradation and erosion to exceed regenerative processes and the result would be a decline in the quality of soil. Fertilizers should be reduced in order to keep inorganic fertilizer farmers apply, from polluting waterways after soil has loosened its nutrients-holding capacity.…...

Similar Documents

Soil Erosion

...Solutions of Soil Erosion Renfang(Alice) Liao Academic Skills 300-1 Professor Smithwick Aug 17, 2012 Introduction Soil erosion is a global issue troubling most of the countries. China ranked 129 among the 142 environmental suspensibility evaluated countries; one of the reasons is the serious soil erosion. 19% of China's land is affected by soil erosion, which is one of the highest rates (Liu& Diamond, 2005: 1181). The statistics are thought-provoking, and the effects of soil erosion are significant. In fact, soil erosion is a part of a vicious circle. Scientists and technicians around the world are working hard to find out the better and more efficient ways to monitor and control soil erosion. Soil erosion is a progress in which soil particles are carried away by force such as water ,wind and gravity. Water and wind erosion are the most important erosion types classified by the erosive agents (Toy, Foster, and Renard, 2002: 55). In this report, the vicious circle of soil erosion, reduction of vegetations and sediments in river is discussed. Among the technologies applied in soil management, the one suitable for local condition is the best. Discussion Soil Erosion and Vegetation Soil Erosion's effects on Vegetation Plants absorb what they need from soil with roots. The topsoil provides the best environment for plants' roots with loose structure, enough air, and rich organisms, but it is removed firstly through soil erosion (Plaster,......

Words: 922 - Pages: 4

Soil

...Soil Test, Masalah dan Aplikasinya pada Tanah Lunak Ir. Muhrozi, MS Lab. Mekanika Tanah Jurusan Teknik Sipil Universitas Diponegoro Pendahuluan Keberhasilan pelaksanaan suatu proyek sangat ditentukan oleh : input data (data penyelidikan tanah) dengan ketelitian yang tinggi, perencanaan (dokumen kontrak/gambar) yang mantap, dan pelaksanaan konstruksi dengan metode kerja yang tepat serta kontrol/pengawasan pada saat pelaksanaan dilakukan secara ketat. Pada akhir-akhir ini banyak masyarakat umum yang menanyakan kepada kita (orang sipil) dengan nada heran dan menyindir sebagai berikut : mengapa akhir-akhir ini banyak bangunan sipil yang runtuh dibanding dengan masa lalu (zaman Belanda) ?, padahal insinyur di Indonesia sekarang sangat banyak. Pertanyaan yang agak menyindir tersebut perlu kita sikapi dengan bijak, instrospeksi kepada diri kita masing-masing dan sambil mencari beberapa penyebab yang aktual, sehingga kita dapat mencari jawaban/solusi yang tepat untuk perbaikan masa yang akan datang. Menurut Penulis, penyebab banyaknya kegagalan konstruksi bangunan sipil pada akhir-akhir ini disebabkan oleh eksploitatifnya pemanfaatan tanah yang melebihi daya dukung tanah secara umum, sebagai contoh : pemanfaatan lahan gambut/rawa/tambak untuk perumahan dapat menyebabkan penurunan yang berlebihan, pembangunan jalan raya dengan timbunan yang melebihi tinggi kritis (Hcr) dapat menyebabkan sliding atau kelongsoran, timbunan optrit yang tinggi mengakibatkan dorongan pada abutment dan...

Words: 2648 - Pages: 11

Soil Protection in South Africa

...Soil Protection in South Africa. Soil protection is the protection and management of the quality of soil. It is all about solving the problems of land degradation. It can further be defined as the combination of the appropriate land use and management practices that promote the productive and sustainable use of soils and in the process minimise soil erosion and other forms of land degradation. 3.2.10 Causes of soil degradation in South Africa. Erosion. Erosion is the detachment and transportation of soil materials by wind or water. Soil erosion is a major problem of agriculture in South Africa. Soil erosion is a natural process but it becomes a serious problem when the activities of humans accelerate the process of its occurence. Land degradation caused by soil erosion causes the loss of fertile topsoil and reduces soil productivity. Researches have shown that over 70% of the soil in South Africa has been affected by one form of soil erosion or the other. The annual soil loss due to soil erosion in South Africa is estimated at 300 – 400 million tonnes for each hectare of land. South Africa loses an average of 20 tonnes of soil for each tonne of agricultural products produced. Soil erosion can be caused by water and, or wind. The effects of these factors on the soil are determined by the speed and the soil cover at the time of occurence. It is estimated that 25% of the country is covered by soil that is susceptible to wind erosion. These include the sandy soils in......

Words: 1745 - Pages: 7

Soil Erosion

...1.0 Introduction Soil erosion has been accelerated in many areas of the world especially Australia. It becomes a biggest problem in Australia which leads Australians have to confront it. Soil erosion means the removal or disappearance of soil by water or wind. It may due to the poor cultivation, overgrazing and stripping of the land. Today, soil erosion is one of the most critical environmental problems in Australia which threatening farmlands, streams and village.  This report below is concentrate on the types, causes and preventing of soil erosion. 2.0 Types of soil erosion There have various types of soil erosion but the two major types of soil erosion that often occur in Australia which is water erosion and wind erosion. 2.1 Water erosion Water erosion is the most widespread erosion in Australia. There have several types of water erosion which is sheet, rill and gully erosion. Firstly, Raindrop can be a main problem for farmers when they strike bare soil. Rain can washes away seed and splashes soil into the air. If the fields are on a slope the soil is splashed downhill which causes deterioration of soil structure (Sydenham & Thomas, 2008). Hence, soil that has been separated by raindrops is more easily moved than soil that has not been separated. Sheet erosion is caused by raindrops whereas rill erosion and gully erosion caused by rainfall. Sheet erosion is defined as the uniform removal of soil in thin layers from sloping land. When rains run off the slope,......

Words: 459 - Pages: 2

Erosion

...Shoreline depletion by erosion is a natural process that occurs due to a variety of reasons. Shores can be devastated due to short-term events such as storms, wave action, or tides and winds. Shorelines can also be affected by large scale events such as glacier or orogeny cycles that alter sea levels. Tectonic movements also cause coastal land to be depleted or increased. These processes are natural, and the rise and fall of coastlines is just another part of nature, but human activity has drastically depleted shorelines worldwide. Beaches are becoming smaller and smaller, and cities are spending millions of dollars a year on replacing the sand alone (Prasetya). There are many things that humans are doing to devastate the coastlines. Along the coast, activities such as land reclamation, port development, shrimp farming, and construction are leading causes in coastal depletion. Within river catchments and watersheds, activities such as river damming and diversion affect the coast. Offshore events affect beaches as well. Dredging and sand mining are just a few examples of harmful offshore processes. Each of these things, combined with natural forces, put the coasts in dire need(Coastal Managment). It jeopardizes coastal cities and environments’ health. People normally flock to coastal areas to inhabit, and developers now have to deal with the problems of erosion. A strong push has been made by the administration in the areas affected to manage the coastal problems and......

Words: 1194 - Pages: 5

Soil and Glaciers

... University of Phoenix Material Soil and Glaciers Worksheet From Visualizing Earth Science, by Merali, Z., and Skinner, B. J, 2009, Hoboken, NJ: Wiley. Copyright 2009 by Wiley. Adapted with permission. Part 1 Size grades of soil are named sand, silt, and clay, which includes colloids. Size grades are defined using the metric system. Use Figure 4.8 from the textbook to fill in the following chart. Specify the type and size and description of the particle. In some cases, particle size will be less than some value or greater than another value. For instance, gravel is greater than 2.0 mm. |Name |Size |Description | |Gravel |>2.0 mm |Gravel is very small, irregular pieces of rock and stone. Gravel is more rough and rocky than sand, and | | | |smaller than stones. The word gravel comes from the French word gravele, "gravel or sand," which in turn | | | |comes from grave, "seashore or sand ("Gravel ", 2015). | |Sand |0.05 |sedimentary material, finer than a granule and coarser than silt, with grains between 0.06 and 2.0 | | | |millimeters in diameter ("Sand", 2003-2015). | |Silt |0.0002 |Silt is...

Words: 1793 - Pages: 8

Soil

...The Nature of Soil Tara D. Weldon GENS 320 Physical Geography August 2, 2015 Soil is a nearly infinitely varying mixture of weathered mineral particles, decaying organic matter, living organisms, gases, and liquid solutions. There are five principal soil forming factors responsible for soil development: Geology, climate, topography, biology, and time. (geologycafe, 2015) Geologic Factor: Over many years (thousands and/or millions) a stony surface can be broken down by weather, such as rain, wind and ice. This process is known as weathering. Climatic Factor: Warmer temperatures and an abundance of water have a tendency to speed up the formation of soil. Cooler temperatures and less precipitation slow down soil formation. Topographic Factor: In areas that are flat, soil tends to get deeper quicker than the surface erodes away. Which typically have deeper, more mature soil layer. On steep slopes, erosion takes place quicker than the formation of new soil. Which have thin layer of soil that is immaturely developed. Drainage is also a factor. Some locations become waterlogged. This blocks oxygen, which is important for soil formation. In those locations soil formation can become severely hindered. Biological Factor: Living organisms have an extensive impact on soil. A small fraction of soil contains living and dead lifeforms. However, the role of these lifeforms can't be underestimated. Roots from plant life dig deep into the soil, creating passages for water and air.......

Words: 759 - Pages: 4

Soils

...Introduction to Soil / Soil Formation LA7014 - Ecology / Technology I What is the difference between dirt and soil? Textbook Definition of Soil • Preferred Definition - “The unconsolidated material at or near the earth’s surface that has properties due to its proximity to the surface” • Long Version - “the unconsolidated mineral or organic matter on the surface of the earth that has been subjected to and shows the effects of genetic and environmental factors of: climate (including water and temperature effects) and macro- and microorganisms, conditioned by relief, acting on parent material over a period of time” Importance of Soil • "Essentially, all life depends upon the soil .... There can be no life without soil and no soil without life; they have evolved together." Charles E. Kellogg • "The nation that destroys its soil, destroys itself." Franklin D. Roosevelt • "While the farmer holds the title to the land, actually it belongs to all the people because civilization itself rests upon the soil." Thomas Jefferson Importance of Soil • Medium in which plants are grown for food and fiber. • Mechanical support for plant roots, such as trees. • Physical support for structures, roads, sidewalks, etc. • Home for millions of organisms. • Air-storage facility. • Mineral supplement for people (in some regions of the world) • Earth’s compost pile. Soil Sphere Theory • Pedo =......

Words: 769 - Pages: 4

Erosion Modelling

...Erosion Modelling Soil erosion is a significant environmental process that degrades the soil in which we rely on for food, fuel, clean water, carbon storage, and as a substrate for buildings and infrastructure (Quinton 2011). It is the disruption of the soil mantle – the pedosphere, or the underlying rock base – the lithosphere by the action of matter of external geomorphic factors, such as water, snow, ice, air, weathered debris, organisms and man (Zachar 1982). Both abiotic and biotic forms of erosion forms patterns that are typical for a particular area such as climate, relief, nature of the surface, activity of the organism, and activity of man (Zachar 1982). It is the degradation or aggradations of the Earth’s surface by the movement of soil material by wind, rain, overland flow and gravity (ASSIGNMENT). Problems with Erosion The movement of sediment and associated pollutants over the landscape and into water bodies is of increasing concern with respect to pollution control and environmental protection. With the expected change in climate over the coming decades, there is a need to predict how environmental problems associated with sediment are likely to be affected so that appropriate management systems can be put in place (Morgan & Nearing). Erosion can impact the productivity of agricultural, post-mining and native systems and is a sign of land degradation (ASSIGNMENT). Soil erosion acts a mechanism for transferring pollutants to surface waters and reduces...

Words: 1174 - Pages: 5

Soil Science

...one of the production methods that use the organic crops such as Indigenous Microorganisms, fertilizer and some factors likes air, water and soil. In additions, large sums of money have been invested in providing irrigation and drainage infrastructure facilities to enable double cropping of rice using high yielding varieties with the latest agronomic practices in attempts to attain high rice yields. There is an alarming concern of a future demand for still higher levels of chemical to be used in order to maintain crop yields. Apart from this, the excessive dependence on chemical pose health hazards and are harmful rice agro-ecosystem and methods to sustain yield levels with the minimal use of chemicals. How to find the solutions? For the detail solution we are explain in this report. In this report, we include the best management practices that can be applied in natural farming process. The management practices are site selection, sediment management surface water and nutrient management. Other than that, we also included the advantages and disadvantages of natural farming of rice production. CHAPTER 2 2.0 MANAGEMENT PRACTICES IN NATURAL FARMING FOR RICE PRODUCTION Management practices for rice production implemented primarily for the purpose of conversing and protecting soil and water resources by controlling the movement of potential agricultural pollutants into surface and groundwater. However, in addition......

Words: 3463 - Pages: 14

Soil

...University of Phoenix Material Soil and Glaciers Worksheet From Visualizing Earth Science, by Merali, Z., and Skinner, B. J, 2009, Hoboken, NJ: Wiley. Copyright 2009 by Wiley. Adapted with permission. Part 1 Size grades of soil are named sand, silt, and clay, which includes colloids. Size grades are defined using the metric system. Use Figure 4.8 from the textbook to fill in the following chart. Specify the type and size and description of the particle. In some cases, particle size will be less than some value or greater than another value. For instance, gravel is greater than 2.0 mm. |Name |Size |Description | |Gravel |>2.0 mm |Limestone, dolomite , sand mixture of pebbles and small rocks | |Sand |>2mm |Quartz, gypsum,mollusk shell, coral fragments basalt pumice. colloids | |Silt |>0.01mm |Sedimentary rock, water, wind, ice include colloids. | |Clay |>0.002mm |Plasticity, firm,silicate, granite, alumina limestone, colloids | |Colloids |>0.00001mm |Molecules, colored glass, tiny grain of sand, silt, and clay. | Part 2 Soils have been classified......

Words: 729 - Pages: 3

Soil and Glacier

...University of Phoenix Material Soil and Glaciers Worksheet From Visualizing Earth Science, by Merali, Z., and Skinner, B. J, 2009, Hoboken, NJ: Wiley. Copyright 2009 by Wiley. Adapted with permission. Part 1 Size grades of soil are named sand, silt, and clay, which includes colloids. Size grades are defined using the metric system. Use Figure 4.8 from the textbook to fill in the following chart. Specify the type and size and description of the particle. In some cases, particle size will be less than some value or greater than another value. For instance, gravel is greater than 2.0 mm. Name Size Description Gravel >2.0 mm Rock that is unconsolidated with fragments that have a general particle size range Sand 0.05 Sand particles are largerly formed by the physical break up of rocks. Sand has small surface areas and have an almost negligible role in the chemical activity of the soil. Sand particles are chemically insert or inactive. Silt 0.002 Silt is formed by physical weathering. Finer silits, which approach colloidal sizes, may exhibit some of the characteristics properties of clay. Clay Below 0.002 milimeters The clay fraction differs from the sands and silts in that it is composed predominantly of minerals formed as products of secondary weathering. The rock mineral will go through change before becoming clay minerals. Colloids 0.0001 – 0.00001 milimeters Like other soil particles, some colloids are minerals, whereas others are organic. Minerals......

Words: 1284 - Pages: 6

Soil Properties

...The purpose of a site investigation is to identify the ground conditions which might affect the proposed development. It enables better understanding of the site and immediate surroundings, which will enable safe and economic developments. They are a common requirement of the investors as well as the regulatory authorities. In the broadest sense, the ground conditions are understood to include not only the underlying soils and rocks but also the groundwater regime, any contamination and effects of any previous uses of the site The purpose of a site investigation is to identify the ground conditions which ma, any contamination and the effects o 1.1.1 The scale of problem Various reports over the past 25 years have shown that the largest element of technical and financial risk normally lies in the ground. Ground related problems have led to late completions and high cost overruns on the national scale. Lady using a tablet Professional Essay Writers Get your grade or your money back using our Essay Writing Service! ESSAY WRITING SERVICE In an analysis of 8000 building projects, National economic Development office (NEDO) stated that one third of the projects overran by more than a month, a further one third overran up to a month due to delays due to unforeseen ground conditions. Work in groups or pairs, note down a few points on Why carry out site investigation? 1.2 Why carry out site investigation? The characterization of ground conditions whether......

Words: 3000 - Pages: 12

Coastal Erosion of Louisiana's Wetlands

...Ashton Piland HNRS 2000 Underlying Causes of Louisiana’s Coastal Erosion “Time is a force we often think of as making things better, able to heal all wounds” (Tidwell 291). Mike Tidwell’s quote summarizes a popular attitude held by most people in times of despair. With time comes the ability to cope with the loss of a loved one, the acceptance of failure, and intellectual growth and maturity. What Tidwell says about time in Louisiana, however, conflicts with the previously quoted description because “In Louisiana, the opposite is true: since that day a year ago… the state has lost 17,845 more acres of land” (291). This chilling statistic prevents us from accepting time as a natural healer and leads us to believe that it is, in fact, the most influential factor in the loss of Louisiana’s coastal wetlands, fishing industry, and Cajun heritage. In Tidwell’s Bayou Farewell, evidence suggests the state’s failure to anticipate the problems from leveeing of the Mississippi River, the unintended consequences of the levees and mechanical drudging, and an overall attitude of denial are the main contributing factors in the destruction of Louisiana’s wetlands. The most pressing problem overlooked by the engineers responsible for building the Mississippi River levees is the lack of nutrients deposited into the land surrounding the river during floods. The Mississippi River carries sediments and soil from all over the country downstream where it eventually empties into the......

Words: 1587 - Pages: 7

Soil Conversion

...Soil Conservation Working Group Report This report provided content for the Wisconsin Initiative on Climate Change Impacts first report, Wisconsin’s Changing Climate: Impacts and Adaptation, released in February 2011. THE WISCONSIN INITIATIVE ON CLIMATE CHANGE IMPACTS 1st Adaptive Assessment Report Contribution of the Soil Conservation Working Group July 2010 Contour stripcropping in central Wisconsin Photo by Ron Nichols, USDA Natural Resources Conservation Service Participants of Working Group William L. Bland, Professor, Department of Soil Science, University of Wisconsin-Madison (Working Group Chair and lead author) Kelly R. Maynard, M.S. Agroecology, University of Wisconsin-Madison (Project Assistant) Jeremy Balousek, P.E., Urban Conservation Engineer, Dane County Land and Water Resources Department Denny Caneff, Executive Director, River Alliance of Wisconsin, Inc. Laura W. Good, Associate Scientist, Department of Soil Science, University of Wisconson-Madison Kevin Kirsch, Water Resource Engineer, Wisconsin Department of Natural Resources Patrick Murphy, State Resource Conservationist, Natural Resources Conservation Service John M. Norman, Emeritus Professor of Soil science, Department of Soil Science, University of Wisconsin-Madison James VandenBrook, Water Quality Section Chief, Wisconsin Department of Agriculture, Trade, and Consumer Protection Sara Walling, Water Quality Specialist, Wisconsin Department of Agriculture, Trade,......

Words: 12656 - Pages: 51